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From gaps to snakes

F E A T U R EF E A T U R E

T
he efficient and safe operation of large fusion devices relies on accu-
rate knowledge of the position and shape of the plasma column inside
the vacuum chamber. There are several reasons for optimizing plas-
ma shape and position, namely, to maintain adequate clearance from
the chamber wall to avoid high densities of power and particle deposi-
tion, to be sufficiently close to the wall to ensure adequate passive

stabilization, to achieve efficient radio frequency (RF) heating by maximizing
antenna coupling (see “Tutorial 9”), and finally, to reduce magnetohydrodynamic
(MHD) activity (see “Tutorial 2” in [1]).

Unfortunately, plasma shape is not a directly measurable quantity and thus
can only be evaluated using diagnostic data, such as the magnetic measurements
of flux and field. Current trends in existing fusion plants, as well as operating sce-
narios envisioned for future tokamaks, present the control engineer with the chal-
lenge of regulating highly unstable, strongly shaped plasmas with precision and
reliability. Therefore, whether to improve fusion performance or to protect the
machine components, the problem of reconstructing the plasma boundary is criti-
cal for both diagnostic and control purposes. In this respect, shape estimation
assumes a key role in fulfilling the requirements for real-time applications.

Overview of Methods for Shape Estimation

The Equilibrium Problem
Today, the tokamak is the most common machine for fusion research, used to mag-
netically confine a gas in the plasma state inside a doughnut-shaped (a torus) metallic



chamber. The principle underpinning the design of the toka-
mak is that it is possible to induce a longitudinal (toroidal)
current inside the gas by using the plasma ring as the sec-
ondary circuit of a transformer. The consequent creation of a
poloidal magnetic field (see “Tutorial 1” in [1]) acts together
with an externally imposed toroidal field to produce a mag-
netic cage that traps the ionized particles. In particular, the
magnetic configuration is characterized by the presence of a
toroidal field Bφ that is nearly an order of magnitude more
intense than the poloidal component Bpol. Consequently, the
magnetic lines that guide the particles around the major axis
of the torus are helices, which rotate slowly in the toroidal
direction. In doing so, the magnetic lines map out nested
toroidal surfaces corresponding to constant values of the
poloidal magnetic flux ψpol = ∫ �B · �dSpol, as well as constant
pressure (iso-surfaces). The resultant magnetic field confines
a plasma of positive pressure by creating a force equilibrium
between the kinetic (gas) pressure and the magnetic pres-
sure (see Figure 1). The poloidal flux, which is given in “Tuto-
rial 1” in [1], is the flux of the magnetic field through a circle
concentric with the axis of the torus. The quantity ψ , which
is equal to the poloidal flux per radian ψ = ψpol/2π , is used
to label the iso-surfaces inside the plasma volume.

Assuming an axisymmetric plasma (“Tutorial 3” in [1])
in a cylindrical coordinate system {r, φ, z} (see Figure A in
“Tutorial 1” in [1]), the MHD equations obtained by cou-
pling Maxwell’s laws with those of fluid mechanics special-
ize to the partial differential equation

�∗ψ = −µ0r Jφ, (1)

where Jφ is the toroidal current density (total current
�J = Jφ �eφ + Jpol�epol, with �eφ and �epol unit vectors) and �∗
is the elliptic operator

�∗ψ ≡ ∂2ψ
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The equilibrium problem is to determine from external mag-
netic measurements the distribution of flux ψ and toroidal
current density Jφ over the plasma and vacuum region
given the configuration of the external coil currents.

By using the momentum equation, which gives the equi-
librium between the gradient of the kinetic pressure p and
the electromagnetic force �J × �B, the Grad-Shafranov equa-
tion (see “Tutorial 15” in [2]) derived from (1) has the form

�∗ψ = −µ0r2 dp
dψ

− F
dF
dψ

. (2)

According to Ampère’s law, the auxiliary function
F (ψ) = r Bφ (ψ) is proportional to the poloidal current
Ipol = 2π F/µ0 flowing in the plasma. Relation (2) describes

the equilibrium for an isotropic (showing the same physi-
cal properties in all directions) plasma given a particular
choice of p and F , which also set boundary conditions at
the coordinate frame origin r = 0 and at infinity. For a
more detailed derivation, see [3] and [4]. This formulation
can be extended to various domains, where magnetic flux
is present. To begin with, it can be observed that, accord-
ing to Poisson’s equation, the term �∗ψ is equal to zero in
the vacuum region. Moreover, �∗ψ , which can be
expressed as a flux-dependent term in any ferromagnetic
materials that may be present, is proportional to the cir-
cuit currents Jφ,ext in the poloidal shaping coils or in
other conductor domains. To summarize,

�∗ψ =






−µ0r2p′ − F F ′ in the plasma domain
−µ0r Jφ,ext (r, z) in the external conductor

domain
�µ (r, z, ψ) in ferromagnetic materials
0 in vacuum,

where the term �µ accounts for the magnetization curve of
the material.

The Plasma Boundary
How do we recognize a mass of highly pure and rarefied
conductive plasma placed in the vacuum chamber? In
other words, how do we define and estimate the boundary
of the plasma?

A practical definition of the plasma boundary, which
comes from the physics of the problem, is associated with
the magnetic configuration of the plasma: The boundary is
the outermost closed flux surface entirely contained
inside the vacuum vessel (Figure 2). Particles interior to
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Figure 1. Plasma surfaces. Nested surfaces, which are loci
of constant flux and pressure, are present inside the plasma.
The magnetic (B-field) and the current (J-field) lines, which
are orthogonal to the pressure gradient ∇p, lie on these sur-
faces, as do the orbits of the ionized particles. The green
arrows represent the kinetic or gas pressure seeking to
expand the plasma, while the orange arrows represent the
magnetic forces that apply a balancing pressure.
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the plasma boundary follow magnetic field lines [1, Figure
8] that remain in the plasma interior, while field lines exter-
nal to the boundary intersect with material structures; par-
ticles that follow the external field lines eventually collide
with these structures. Topologically, the boundary is either
the outermost flux contour not intersecting any solid object
or it is a separatrix, that is, a surface containing an X point
(Figure 2), which is a point at which the poloidal magnetic
field is zero, or, equivalently, the flux function presents a
saddle point. The X point often exists independently of
whether it is a part of the most external closed flux surface.

For an axisymmetric plasma there is no loss in validity
in limiting the analysis to a poloidal cross section of the
machine. Two domains of interest can be identified on the
poloidal plane �, as shown in Figure 2:

● � I is the region enclosed by the shaping coil locations
● the subset �P of � I is the plasma region, defined as

the vacuum region interior to the containment ves-
sel, where plasma may exist.

The flux function ψ defined in the domain � I is a real-
valued function of r and z monotonically decreasing from
the center of the plasma toward the edge. The boundary
flux value ψB, which identifies the plasma boundary sur-
face χψB , is determined by comparing the flux value ψX at
the X point with the maximum value ψfirstwall of the flux
along the first wall, which is constituted by the plasma fac-
ing structures. When the X-point flux is higher than
ψfirstwall , the separatrix is internal to every flux surface
touching the wall, and, consequently, the plasma boundary
coincides with the part of the separatrix inside the plasma
domain �P (Figure 2). In this case, the plasma is in a divert-
ed configuration. Otherwise, the plasma is a limited plasma,
physically touching the first wall at the limiter point Plimiter

characterized by ψ (Plimiter) = ψfirstwall (see “Tutorial 7”).
The boundary reconstruction problem is to locate the

plasma inside the vacuum vessel and determine the plasma
boundary position with respect to the first-wall compo-
nents. Clearly, the equilibrium problem and the boundary
reconstruction problem are intimately connected. It is
important to stress that the plasma is seen and investigat-
ed only through the eyes of a privileged magnetic descrip-
tor, namely the flux function, which contains all of the
information needed for reconstructing the boundary posi-
tion. At the same time, complete knowledge of the external
field configuration facilitates the reconstruction of the plas-
ma location but not the reconstruction of interior details.

Reconstruction and Shape
Description for Shape Control
Once the equilibrium problem and the boundary definition
have been formulated, the focus of attention is on understand-
ing how the plasma and boundary shape evolve in time, as
well as the possible magnetic configurations. A complete
answer to these questions lies in the solution of a free bound-
ary problem, since the differential equation governing the equi-
librium (2) is defined in a domain whose boundary is not given
a priori and is part of the unknown. The free boundary prob-
lem is often solved using finite difference or finite element
techniques, whose implementation sometimes involves adap-
tive meshing procedures to follow the plasma deformation.
Nonlinear equilibrium evolution codes, such as PROTEUS [5]
and MAXFEA [6], reconstruct the shape and simulate the plas-
ma dynamics for a plasma discharge. Nonetheless, in these
electromagnetic codes, the exacting task of modeling the
physical phenomena often requires iterative procedures that
are computationally intensive. Indeed, considering these
aspects and the inherent features of finite element methods,
while the equilibrium evolution codes represent a valuable
tool for simulating plasma behavior and designing and validat-
ing controllers, real-time use is not practical.

Consequently, we describe an alternative approach to
reconstructing the boundary shape during the pulse, using
procedures that fit simplified analytical models to magnetic
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Figure 2. Poloidal cross section of a tokamak machine. In
the poloidal plane �, the domain � I is the region within the
shaping coils, while the plasma region is �P. The plasma
boundary is defined as the most external closed flux surface
entirely contained in the vessel. The magnetic configuration
can be either a diverted or a limited plasma. In a diverted
plasma, the plasma boundary flux is determined by the mag-
netic null location, where the boundary forms an X point. In
a limited plasma, the plasma touches the first wall at the lim-
iter point, which determines the boundary flux. The flux
value is ψB at the boundary surface χψB .
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measurements. More generally, semianalytical procedures
can be developed to approximate the plasma flux distribu-
tion with a suitable number of current filaments [7] or
finite elements [8] placed inside the vacuum vessel. Related
algorithms use multipolar expansions to describe the mag-
netic configuration [9] (a multipolar expansion can be
thought of as a Taylor expansion of the function ψ). In this
regard, it is important to distinguish among equilibrium
evolution codes such as MAXFEA and PROTEUS, equilibrium
reconstruction codes (EFIT [10]), and boundary reconstruc-
tion codes (XLOC [11]). The equilibrium evolution codes
evolve the equilibrium, based on the dynamics of the exter-
nal coil currents and either a bulk or distributed plasma
current, while equilibrium reconstruction codes solve the
equilibrium problem, taking into consideration internal

measurements and the actual plasma current distribution.
Both types of codes provide a complete magnetic descrip-
tion of the plasma, which includes both the plasma current
density distribution and the flux distribution. A primary
difference between the two classes of codes concerns the
input data, since equilibrium reconstruction codes use
experimental measurements and the resulting accuracy is
limited because of ill-posedness of the problem and mea-
surement noise. On the other hand, the data for the equi-
librium evolution codes are provided by the code itself, in
the form of simulated currents in all conductors, including
plasma, and is therefore perfectly known, at least in princi-
ple. Finally, boundary reconstruction codes are limited to
locating the boundary and do not aim at a detailed analysis
of the internal plasma features.
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Tutorial 6: Divertors

The helium byproduct of the fusion reaction (sometimes called helium ash) must be removed from the vacuum cham-
ber to prevent the by-product from interfering with subsequent fusion reactions. The method selected for accom-
plishing the removal is to use one or

more divertor regions (divertors) with
pumping. The figure below shows the diver-
tor in the JET tokamak. The idea of the
divertor is to divert nonhydrogen particles
away from the plasma to a region that is
designed to safely absorb their heat and
remove them from the plasma chamber. All
particles, including the helium ash, tend to
remain in the plasma for only a finite time
known as the confinement time (see “Tutorial
2” in [1]) before leaking out. When the heli-
um nuclei leave the plasma, they are still
charged and therefore tend to follow mag-
netic field lines. Other impurities, as intro-
duced by the plasma interacting with
device components, are also ionized and
follow the field lines. The region just out-
side the separatrix (last closed flux surface)
where this occurs is known as the scrape-off
layer (SOL). Field lines outside of the separa-
trix do not close inside the vacuum vessel.
Instead, they terminate on the interior plasma-facing wall of the vacuum vessel (the first wall) at locations known as the strike
points (see the figure above). As a consequence, the impurity and helium ions follow these first few external field lines until
they contact the wall in the divertor region, and they are then pumped out of the tokamak chamber. The particles contact-
ing the plasma facing materials at the strike points are still very high energy, so divertors are specifically designed to with-
stand this continuous bombardment of high energy particles. Divertors are always constructed of heat-resistant materials
and often incorporate geometric designs intended to widen the area that is impacted by the particles. 

The divertor region in the JET tokamak. A set of flux contours is shown to
represent the plasma. The divertor baffles serve to direct particles flowing
in the scrape-off layer into the throat of the divertor, where they can be
pumped out (light blue arrows). Cross sections of the four divertor coils
for JET can be seen just outside the divertor. Each small green rectangle
inside a coil represents a single turn of the multiturn winding used to mul-
tiply the flux produced by the coil. The small circles inside these rectan-
gles are the channels used for water cooling. (Courtesy of EFDA/JET.)
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The Fitting Codes EFIT and XLOC
The EFIT code [10] is an equilibrium reconstruction algo-
rithm that fits the equilibrium model (2) to the external

magnetic measurements and to internal diagnostic data.
The solution, which satisfies the Grad-Shafranov model,
accounts for a distributed current source in the plasma
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Tutorial 7: Limiter and Divertor Configurations

When the first tokamak experiments were conducted in the for-
mer Soviet Union, it was observed that the vacuum vessel was
not sufficient to maintain a pure plasma. Some improvement

could be obtained by limiting the plasma with the insertion of a material
structure (called a limiter) just inside the chamber (see Figure A). In this
way, the external layer of the plasma magnetic lines are intercepted by the
limiter, and the last closed flux surface is kept separated from the first wall.
In other words, the mechanical limiter protects the chamber from plasma
bombardment and serves to define the edge of the plasma. Nevertheless,
the fluxes of particles that collide with the limiter structure are highly ener-
getic and thus can dislodge atoms from the surface material through a
process called sputtering. Therefore, when designing a limiter, it is important
to choose an appropriate material, such as tungsten, molybdenum, or
graphite, to ensure power load management and durability, and to design
for easy replacement. At the same time, efficient pumping is needed to
remove the impurities created by the sputtering and prevent plasma pollu-
tion (cryocondensation pumps are usually employed to this aim).

These issues led to the development of an interface between the plasma
and the facing components, without using a mechanical limiter. The mag-
netic divertor (see “Tutorial 6”) is a structure that creates a magnetic config-
uration where the external layer of magnetic lines is guided away from the
main plasma and collides onto a collector plate. A poloidal divertor is
obtained by placing several coils near the plasma surface, with a current
parallel to that of the plasma and flowing in the opposite direction (flux
expansion coils in Figure B), to generate a local field that opposes the poloidal
field in the plasma. Consequently, the resulting magnetic field is locally
characterized by the presence of a null point (X point), and thus a magnetic
separatrix is created (see Figure B). Since, in most tokamaks, the pulse dura-
tion is much longer than the particle containment time, during the dis-
charge, on average, each plasma ion drifts toward the wall and returns to
the plasma many times (plasma recycling). Using the divertor configuration,
the recycling properties of the plasma are generally improved because the
collector plates are more remote than in the limiter case. For this same rea-
son, by controlling the flux expansion coil currents (Figure B), the magnetic
lines can be spread over a wider area on the material structure, thus leading
to a lower maximum power density impinging on the structure and longer
times between replacement of the plates.

Furthermore, it has been shown, by the theory of plasma physics, that the
shape of the plasma is of great importance in determining fusion perfor-
mance and that the interaction with the first wall plays a fundamental role. In particular, it has been observed that the formation
of a magnetic separatrix inside the vacuum vessel facilitates the transition toward a high-confinement regime (the H-mode),
while increasing the plasma temperature and the energy confinement time (see “Tutorial 2” in [1]), for the same input power.

Figure A. The limited plasma configura-
tion. This configuration is generated by
inserting, in the vessel, the limiter, a
mechanical object that intercepts a fraction
of magnetic lines and creates a separation
between the main plasma and the facing
structures. In doing so, plasma pollution
due to impurities from the first-wall is
reduced, and the last closed flux surface
bounding the plasma volume is defined.

Figure B. The diverted plasma configura-
tion. The divertor locally modifies the mag-
netic lines so that the main plasma does not
contact the vessel. With this configuration, a
magnetic null called the X point is present;
the magnetic surface defining the plasma
boundary is referred to as the separatrix.
The magnetic lines external to the plasma
boundary collide onto a collector plate
equipped with cryocondensation pumps to
remove impurities, which could reenter the
plasma.
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region and is given by the pair 
(
ψ, Jφ

)
, where the distribu-

tion ψ of flux on the poloidal plane along with the toroidal
plasma current Jφ provide the least-squares fit to the data
consistent with (2).

Each magnetic measurement in EFIT (see “Tutorial 8”)
is defined as the sum of two contributions, due to the
external coil currents Iext and the plasma current Jφ . A
measurement C at a generic point Pj in the domain � I is
obtained from the current sources placed at locations {Pi}
by means of Green’s functions G, where C Pj = G(Pj, Pi) IPi

[12]. The solution to the reconstruction problem is
obtained from an iterative algorithm that estimates at iter-
ation m + 1 the magnetic measurement C (m+1) (for more
details, see “Tutorial 8”), using the flux ψ(m) in the plasma
domain �(m)

P calculated in the previous step m. Hence, an
iteration step in the EFIT algorithm is given by

C (m+1)

Pj
=

Next∑

i=1

G(Pj, Pi) Iext +
∫∫

�
(m)

P

G(Pj, P) Jφ
(

P, ψ(m)
)

dP.

The signals obtained from EFIT are then compared with
data from magnetic sensors, and, to obtain the axisymmet-
ric plasma current, the reconstruction algorithm mini-
mizes the quadratic error 

χ2 =
Nmeas∑

k=1

(
Mk − Ck

σk

)2
(3)

on the diagnostic data weighted with the variance σk of the
measurement, where Mk and Ck are the magnetic sensor
measurement and the reconstructed signal, respectively.
The optimization procedure is then interleaved with the
solution of the equilibrium problem

�∗ψ(m+1) = −µ0r Jφ
(
ψ(m)

)
(4)

to update the flux function. This procedure is less compu-
tationally expensive than trying to directly solve the non-
linear problem defined by (2) but not sufficiently fast for
real-time use. Adjustments are thus made to the algorithm
so that a one-iteration scheme can follow the plasma evo-
lution during the pulse.

The modified real-time EFIT shape identification
method is implemented as a two-loop routine [13], where a
fast loop performs the least-squares fit (3) and generates
the error signals as inputs to the controller, comprising
the flux values at a predefined set of control points. A
more complex portion of the algorithm is required to solve
the equilibrium problem (4). Consequently, the flux errors
fed to the control algorithm are provided through a fit pro-

cedure that uses newly acquired diagnostic data in (3) and
a flux data set from (4) based on previously obtained mea-
surements. Thus, the error-signal inputs for the real-time
control system partly inherit this older information.

A fitting scheme based on local expansions has been
developed at JET and incorporated in the XLOC code,
which is devoted to real-time boundary reconstruction
[11]. In XLOC, the magnetic flux function is extrapolated
into the vacuum region (external to the plasma boundary)
by fitting the available sensor measurements to the vacuum
equation �∗ψ = 0, thus overcoming the unwieldy task of
plasma modeling. The information is then postprocessed
by a second module that reconstructs the plasma shape
in terms of boundary to first-wall distances called gaps.

The XLOC code represents the magnetic flux ψ on the
poloidal plane with several polynomial functions of high
degree, each locally defined over connected domains sur-
rounding the plasma (Figure 3). This procedure imposes
continuity constraints that provide smooth transitions.
Having defined basis functions in terms of powers of the
plane coordinates (r, z), that is {1, r, r2, . . . , rz, r2z, . . . } ,
and by constraining the local flux equations to satisfy the
vacuum condition �∗ψ = 0, the polynomial model ψ̂ can
be written in matrix form as

ψ̂(r, z) = f(r, z)T A, (5)

where the components of the vector A =
[a0,0, a1,0, a2,0, . . . , a1,1, a2,1, . . . ]T are polynomial coeffi-
cients and f(r, z) = [1, r, r2, . . . , rz, r2z, . . . ]T .  A l inear
problem with unknowns {ai, j}, which can be determined
from measurements of the flux ψ , is defined in (5). The
coefficients {ai, j} are calculated by fitting the polynomial
model function to a vector M of sensor measurements
with known (r, z) coordinates. Since the magnetic config-
uration in the X-point region is strongly influenced by
the current flowing in the divertor coils, this informa-
tion is explicitly inserted in the model. The flux contri-
bution ψdiv at location Pj due to the divertor coil
currents can be computed by means of precalculated
Green’s functions G

ψdiv(Pj) =
Ndiv∑

i=1

G(Pj, Pi) Idiv(Pi),

where the Ndiv divertor sources are placed at Pi. Excluding
ψdiv from the fitting procedure improves the convergence
and increases the precision of the fit, that is,

ψ̂(r, z) = ψdiv(r, z) + f(r, z)T A. (6)

The vector M of measurements from sensors of various
types, such as flux loops, pickup coils, and saddle loops
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(see “Tutorial 8”), can be reconstructed from the flux func-
tion (6) and expressed using polynomial functions
gflux(r, z), gpickup(r, z), and gsaddle(r, z) deduced from f(r, z).
The sensor measurements sflux, ssaddle, and spickup [(1)–(3)
in “Tutorial 8”] can be expressed as

sflux (P) =ψdiv(P) + f(P)T A
︸ ︷︷ ︸
gflux(P)T A

,

ssaddle (P1, P2) = [ψdiv(P1) − ψdiv(P2)]

+
[
f(P1)

T A − f(P2)
T A

]

︸ ︷︷ ︸
gsaddle(P1,P2)

T A

,

spickup (P, θ) =−1
r




∂

(
ψdiv(P) + f(P)T A

)

∂z
sin θ

︸ ︷︷ ︸
gpickup(P,θ)T A

+
∂

(
ψdiv(P) + f(P)T A

)

∂r
cos θ





︸ ︷︷ ︸
gpickup(P,θ)T A

,

where P = (r, z), P1 = (r1, z1), and P2 = (r2, z2) indicate the
sensor positions, and θ is the orientation of the pickup
coils. By grouping gflux, gsaddle, and gpickup into a vector gM

and placing the ψdiv calculated contributions into a vector
ψM,div, the least-squares fit using the sensor measurement
vector M is obtained from 

min
A

∥
∥
∥ψM,div + gT

M A − M
∥
∥
∥

2
,

which yields the polynomial coefficients 
{
ai, j

}
for the

model ψ̂ of the flux map [Figure 3(b)].
Next, the X point is located by searching for the zero

of the magnetic field in a predetermined box superim-
posed on the divertor region [Figure 3(a)]. The limited-
diverted plasma distinguishing procedure (see the
discussion in “The Plasma Boundary’’ section) is then
carried out by comparing the flux value at the X point
with the values at predefined first-wall locations to obtain
the flux at the boundary ψB. A set of gap lines is chosen
by selecting a group of segments that start at the first
wall and end near the center of the vacuum chamber as
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Figure 3. JET cross sections that illustrate operation of the XLOC code. (a) The partition of the poloidal plane and the gap
locations. The gap lines and the magnetic sensors are indicated with solid lines and dots, respectively. The gap values at JET
are computed as the distances between the interior wall of the containment vessel (shown) and the plasma boundary along
the illustrated gap lines. The divertor coil sections are visible in the lower part of the machine, and the box for the X-point
search is highlighted. (b) The output flux map of the XLOC code postprocessed with a contour routine. Artifacts due to the
polynomial approximation and the lack of a plasma model are evident.
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In a fusion device, magnetic measurements are usually sep-
arated into two different classes, namely, field and flux
measurements, both of which are obtained by using sen-

sors placed outside the plasma boundary but within the
external magnetic field created by the plasma.

Typical magnetic sensors produce a voltage V0 that is pro-
portional to the time derivative dm/dt of a physical quantity m.
For example, m might be a current in amps or a flux in webers.
The voltage V0 = k(dm/dt) is integrated by a hardware inte-
grator circuit to obtain V1 = ∫

V0 dt = km. The integration is
usually followed by one or more processes (amplifiers, voltage
dividers, digitizers), whose net effect is to multiply V0 by a gain
G to obtain V2 = GV1 = Gkm. Multiplication by 1/(Gk) con-
verts from the integrated volt-second signal to physical units.
The multiplier k depends on the type of device. Examples of
tokamak magnetic sensors are shown in the figure (right).

The magnetic flux ψpol is measured by integrating the
electromotive force induced in a full flux loop placed out-
side the vacuum vessel in the toroidal direction. Flux loops
consist of a single loop of wire connected to a voltage sen-
sor. The integrated voltage represents the total (poloidal)
flux ψpol through the loop. For an axisymmetric plasma,
this measurement provides the value of the flux in a specific
position of the poloidal plane. For flux loops, k = 1 can be
used to represent flux directly in volt-seconds or webers.
Some devices use k = 2π to convert from total flux ψpol in
weber to flux ψ in webers per unit radian.

Saddle loops also measure total magnetic flux, and, by
assuming nearly constant flux across the loop, a measure-
ment of the magnetic field normal to the loop surface is
obtained. A saddle loop can be constructed by connecting
two sectors of flux loops. At JET, the use of saddle loops on
the surface of the vessel provides, for a perfectly axisymmet-
ric plasma, measurements of flux differences between two
locations on the poloidal plane.

The magnetic B-field measurement is performed using
inductive sensors (known as magnetic probes, B-probes, magnetic
pick-up coils, or just pick-up coils) that measure the flux varia-
tion induced in a coil, so that the flux variation is proportion-
al to the field at the sensor location. Magnetic probes consist
of multiple windings of wire in a small (a few centimeters)
radius, connected to a voltage sensor. The integrated voltage
represents local (poloidal) magnetic field using the relation-
ship ψ = ∫

B dA/2π , where ψ is the flux per unit radian.
This expression is an approximation since the flux is not per-
fectly constant across the open end of the probe. For magnet-
ic probes, the proportionality constant k is given by k = NA,

where N is the number of turns and A is the cross-sectional
area (see the figure above).

Taking the JET tokamak as an example, each measured
signal s is related to the flux ψ by the equations

sflux (r, z) = ψ (r, z) , (1)

ssaddle (r1, z1, r2, z2) = ψ (r1, z1) − ψ (r2, z2) , (2)

spickup (r, z, θ) = −1
r

[
∂ψ (r, z)

∂z
sin θ+

∂ψ (r, z)

∂r
cos θ

]

, (3)

where, considering the poloidal cross section of the machine
(φ = constant), (r, z) is the sensor location for the flux loops
and pickups, (r1, z1) and (r2, z2) are the locations of the
toroidal limbs of the saddles, and θ is the orientation of the
pickup coils;  (3) is based on the flux-field relation given by 

Br (r, z) = −1
r

∂ψ (r, z)

∂z
,

Bz (r, z) = 1
r

∂ψ (r, z)

∂r
.

Finally, as shown in the figure, Rogowski coils measure
toroidal plasma current (Ip) plus currents in the vessel by
computing a line integral of magnetic field in a closed loop
around the current path. For Rogowski loops, the proportion-
ality constant k is given by k = Nµ0nA, where n is the num-
ber of turns per unit length, A is the cross-sectional area of a
single coil turn, and N is the total number of coil turns
around the current path being measured.

Magnetic diagnostics. All of these sensors operate on the
same basic principle, namely, changing flux induces a volt-
age in a coil of wire. This voltage is integrated to deter-
mine the flux through the coil.

Tutorial 8: Magnetic Diagnostics
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shown in Figure 3(a). The flux function is computed along
each gap line, and a point is determined whose flux value
corresponds to the boundary flux value. The distance
from this point to the beginning of the gap line is defined
as the gap value. The XLOC code constructs a discretized
representation of the plasma boundary through this
sequence of points (gaps) and passes this information to
the shape controller. The effect of neglecting the plasma
current in the modeling is visible in Figure 3(b). In partic-
ular, the validity of the flux map reconstruction is local
and limited to the exterior of the plasma, while artifacts
are formed in the interior of the plasma.

Employed in DIII-D and JET, the real-time EFIT and XLOC
codes have proven to be efficient for producing real-time
shape information. Moreover, these algorithms use differ-
ent representations to describe the plasma boundary and
interface with the controller, namely, flux values (real-time
EFIT) or gaps (XLOC).

The Shape Descriptors
At this stage, we make a distinction between shape estima-
tion and shape reconstruction. Shape reconstruction refers to

a full description of the plasma shape, including the contin-
uous boundary curve, which can be obtained by using non-
linear equilibrium codes, while shape estimation provides
only a discrete description of the shape for control purpos-
es. The representation of the boundary measures the dis-
tance in shape between the actual plasma boundary and
the specified target boundary, namely, a metric.

Calculation of high-order current moments [14] pro-
vides a complete description of the plasma geometry.
Given the toroidal current distribution Jφ , the position of
the current centroid (center of plasma current “mass”), tri-
angularity, and other parameters can be computed
through integral calculations as current distribution
moments. However, even though the total plasma current
is controlled, the distribution of Jφ across the plasma
depends on less measurable—and less controllable—
aspects of the plasma. The difficulty of measuring the
internal current distribution and performing integral calcu-
lations calls for an alternative computational methodology
in which a plasma current model is not used and only the
geometry of the shape is taken into account.

The plasma shape is characterized by local properties
such as the existence of a poloidal limiter, the distance
between the boundary and the first wall, the presence and
location of X points, and by global parameters that consider
the shape as a whole (see “Tutorial 7”). The concept of
gaps as the distance between the plasma boundary and
the machine first wall represents an evolution of the basic
flux description. The necessity of defining and producing
quantities such as gaps, which cannot be directly mea-
sured but only calculated, stems from the idea of translat-
ing a difference in flux into a spatial distance.

The collection of global shape parameters includes the
definition of area of the plasma cross section A, important
for estimating the nuclear reaction volume, and other
quantities such as the elongation κ and the triangularity δ
(defined below), which describe how this area is distrib-
uted with respect to the poloidal section. From the physi-
cist’s point of view, these features are interesting for
developing reactor-relevant scenarios needed to reach
high fusion performances. For the control engineer, to
define elongation κ and triangularity δ, it is necessary to
find suitable mathematical definitions consistent with intu-
ition. Elongation κ is a characteristic of the plasma
poloidal cross section [4], defined as the ratio of the
plasma sectional area A to the area of a circle having the
same minor radius a as the plasma, that is,

κ = A
πa2

, (7)

where the minor radius a of a noncircular plasma is
defined as the semidistance between the outermost and
innermost points of the boundary curve (with reference to
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Figure 4. Operational definitions of the plasma shape global
parameters. The main properties of the cross section are shown,
including the extreme boundary points (P1, P2, P3, P4), the
center C of the tokamak cross section, and major and minor radii
R and a. The area partition (ALOWin, ALOWout, AUPin, AUPout) of
the plasma cross section is also shown. Given these definitions,
the elongation is operationally obtained as κ = [z(P1) − z(P2)]
/[r(P4) − r(P3)] = (zmax − zmin)/(rmax − rmin). Upper and
lower triangularity (δUP and δLOW) are computed as δUP =
[rav − r(P1)]/a and δLOW = [rav − r(P2)]/a, where rav is the
average radius between rmax and rmin.



Figure 4, respectively, points P4 and P3). The triangularity δ
measures the extent to which the plasma is shaped like a
triangle. The calculation of these quantities usually
depends on local point-based information of the plasma
cross section, shown in Figure 4, with points
{P1, P2, P3, P4}. The elongation is computed as

κ = z (P1) − z (P2)

r (P4) − r (P3)
= zmax − zmin

rmax − rmin
. (8)

A similar observation holds also for the upper and lower
triangularity parameters

δUP = rav − r(P1)

a
, (9)

δLOW = rav − r (P2)

a
, (10)

where rav ≡ (rmax + rmin)/2 is the average radius.
The cross-sectional area, elongation, and triangularity

are approximated in real time during the plasma discharge
using information available to the control system. For
example, when the boundary is specified by a set of gaps,
the position of the boundary curve uppermost point P1 is
approximated from measurements along the gap line that
best represent (on average) the plasma top point location.
The choice of this gap line is made by analyzing the operat-
ing space of plasma configurations attainable in the specif-
ic device. 

Flux and Gap Descriptions
for Shape Control
Given the definition of the plasma boundary, a natural way
to control the plasma shape is the isoflux technique [15],
which consists of regulating the magnetic flux at a set of
locations in the poloidal plane using the external coil cur-
rent sources. The magnetic description provides direct
information on the boundary location, and the accuracy of
the evaluation of the flux function is reflected in the preci-
sion of the shape reconstruction. The plasma shape error
is determined by computing the flux error eψ relative to a
reference value ψref at a set of control points on the
poloidal plane. The flux error eψ at a point Pj, which serves
as a control input, can be directly linked to the currents
flowing in the plasma Iplasma, in the active coils Icoils, and
in the passive structures Ivessel according to

eψ(Pj) = Gplasma(Pj, Pplasma) Iplasma

+ Gcoils(Pj, Pcoils) Icoils + Gvessel(Pj, Pvessel) Ivessel,

where Gplasma, Gcoils, and Gvessel are Green’s functions. By
choosing the control point locations before the pulse

sequence begins, a control system based on this approach
can drive the plasma current circuit and the shaping coils,
and thereby obtain the desired configuration.

The isoflux technique is currently implemented in the DIII-
D tokamak [13] by means of a proportional-integral differen-
tial (PID) controller whose gain matrices {KP, K I, KD} evolve
in time to match the designed plasma shape and parameters
(see Figure 5). The external voltages Vext are given by

Vext = KP

[
eψ

eX

]

+ K I

∫ [
eψ

eX

]

+ KD
d
dt

[
eψ

eX

]

,

where eX is the error in the X-point position. Experience
has shown that the real-time reconstruction algorithm
yields good accuracy compared with the offline full equilib-
rium reconstruction, and, by accurately placing the flux
control points, the system provides sufficient flexibility to
explore a wide range of different shapes and configurations.

The gap approach was used at JET to develop a robust
multi-input, multi-output feedback control system (see [16]
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Figure 5. Layout of the DIII-D tokamak. The poloidal cross
section of this tokamak highlights the position of the shap-
ing field coils and the points for the isoflux control system
(diamonds). The drawing represents a single null divertor
discharge.
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and [17]). Several gap lines were chosen on a geometric
basis in accordance with operational needs. The gap calcu-
lation module linked to XLOC searches along the gap lines
for the boundary flux value to produce a set of plasma to
first-wall distances. A schematic picture of JET gap lines,
together with the location on the poloidal cross section of
the machine is presented in Figure 6(a).

In the framework of the ITER project [Figure 6(b)] [18],
several controllers were designed, based on a gap control
strategy (see, for example, [19]). In terms of robustness
and accuracy, the simulation results demonstrate that a
gap controller is an effective approach for controlling the
plasma shape in the new machine and for comparing differ-
ent solutions. These analyses are being used to assess per-
formance of the system to obtain the expected plasma
configurations.

Representation of the boundary by a set of distances
from the wall introduces new considerations when
addressing the design of a shape control system. First of
all, while the map between the currents and the flux values
can be regarded as linear by neglecting transient effects
and nonlinearities in the materials, a linear relation is no
longer valid when we consider the gap distances, or 
X-point location. The most obvious nonlinearity is the tran-
sition between the limited and diverted plasma shapes.

Despite the success of the gap control technique in JET
and the studies carried out for the ITER design, the local
nature of the information inherent in the gap description

can lead to ambiguities in the boundary representation.
Some details may remain hidden when it comes to deter-
mining particular properties of the plasma shape, such as
the extreme points of the boundary and the global quanti-
ties A, κ , and δ, although the locality of the information is
partly overcome by the good behavior and regularity of
the boundary shape. Moreover, choosing a discrete num-
ber of points to describe and control a continuous curve
introduces arbitrariness in the selection of the gap lines.
This issue can be minimized, but not completely avoided,
by an intelligent and careful procedure for choosing the
controlled variables  [20], [21]. A further problem arises
from the fact that the gap lines are not always normal to
the vessel, and thus the gap measurements do not repre-
sent the minimum distance from the first wall but rather
the distance along a line. In some cases, increasing the gap
can cause the plasma to move toward the vessel. Experi-
ence and a careful evaluation are fundamental in under-
standing the gap information and in discerning potentially
dangerous situations, but again the intervention of some
high-level interpretation is needed.

While adequate for the accuracy requirements in normal
plasma operation, the gap description and gap-based control
appear to have limited effectiveness in more advanced sce-
narios, where the control of global quantities such as elonga-
tion and triangularity are demanded. In fact, these shape
parameters are usually defined in real time using functions of
gap values (Figure 4) in place of the original definitions
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Figure 6. Gap location for (a) JET and (b) ITER. The gap location is chosen semiempirically at JET according to experimen-
tal needs, while for ITER an optimal placement procedure is adopted. In any case, the gap approach suffers from the local
nature and arbitrariness in the definition of the gaps.
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(8)–(10). Regulating these gaps may fail to control the behav-
ior of the plasma parameters since local deformations can
distort the boundary while preserving the gap values.

A step toward more complete control of the shape has
been made at JET by the eXtreme Shape Controller (XSC)
project [22]. The XSC, which uses a specific choice of
actuators for a particular target plasma, achieves the
desired geometry by minimizing the deviation of a dense
set of gaps from the target shape (see also [23]). Never-
theless, this approach is based on a discrete description
of the boundary.

We have used an approach to represent the boundary
with a continuous curve as an alternative to the gap
approach. Our objective is thus to develop a viable
methodology for solving the shape control problem direct-
ly through the control of a two-dimensional (2-D) planar
contour without resorting to fixed (in the sense of the gap
lines or the flux control points) discrete representations.

The Deformable Model Approach
The proposed boundary representation uses a geometric
description that exploits the intrinsic nature of the plasma
boundary as a constant flux (isoflux) 2-D curve on the
poloidal cross section. Based on the fluid nature of the
plasma, the magnetic flux configuration created by the
plasma current and the external circuit currents can be
regarded as the image of an object (that is, the plasma),
and the plasma boundary as the object edge. The plasma
boundary reconstruction can thus be viewed as a feature
detection problem.

With reference to Figure 7, different ways of represent-
ing the shape reflect various original models that inspire
the modeling process. For example, we can view the plasma

as an open curve acting as a flexible rod bent by external
forces and controlled with inner tension, a closed curve
resembling the longitudinal section of a balloon held by
the knot and corresponding to movements of inflation or
deflation, or even as a twisted closed wire model.

From these preliminary considerations, the modeling
involves decision processes that guide the automatic
detection of shape boundaries. In particular, the nonlin-
earity introduced by the transition from limited to divert-
ed configuration and vice-versa affects the choice of
assumed shape topology.

Active Vision and Snakes
In the last few years, model-based vision has developed as
a vigorously researched subject, which uses mathematical
modeling to solve computational vision problems. In par-
ticular, deformable models have been used to guide the
interpretation of camera-acquired images in noisy envi-
ronments and to improve the robustness of object recog-
nition [24], [25]. The fundamental idea of deformable
models (or templates) is to accommodate a curve or sur-
face into a data substratum based on 2-D or three-dimen-
sional (3-D) image representations. A deformable model
can deform according to the features of the object repre-
sented in the image, while preserving the characteristics
of the model geometry. Geometry, physics, and approxi-
mation theory are combined, where geometry is responsi-
ble for the regularizing properties of the contour, physics
gives the basis for a consistent representation, and
approximation theory is used to fit the data.

On a more technical level, deformable models can be
seen as elastic objects, which respond naturally to con-
straints and forces that are implicitly applied through an
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Figure 7. Curve models for plasma boundary representation. Examples of deformable models are shown. (a) Flexible rod,
(b) balloon, and (c) twisted closed wire. The active contour model and the geometry of the curve are chosen according to the
reconstruction issues of interest.
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energy deformation function defined on the model itself.
This energy function increases as the contour deforms
from the natural rest shape, which represents the mini-
mum energy state for the model. The deformation gives
rise to elastic forces, which are treated as internal forces

for the model. Image forces are also defined, which attract
the contour to the features of interest.

In this framework, snakes [26] are parametric contour mod-
els that are obtained as energy-minimizing splines and that
represent a special case of the multidimensional deformable
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Several methods are used in experimental devices for
heating and driving current in the plasma. Methods
that have reached sufficient maturity for everyday

experimental use include ohmic heating (OH) and current
drive, neutral beam injection (NBI), and various forms of
radio-frequency (RF) heating and current drive. Although
these methods can accomplish both objectives, they are
often configured with a primary purpose of either heating
or current drive.

Ohmic current drive operates through a transformer
action. Continuously changing current in one or more
poloidal field coils produces a changing poloidal flux � ,
known as the ohmic flux, at the plasma. The derivative of
this flux defines an induced voltage V = −d�/dt known
as the plasma loop voltage, which drives current in the
plasma according to LdI/dt + RI = V , just as in a stan-
dard transformer. Here, the values L and R represent the
plasma bulk equivalent self-inductance and resistance.
Resistive losses in the plasma are responsible for the heat-
ing effect, hence the origin of the term ohmic.

RF heating is a process by which electromagnetic
waves are transmitted into the plasma using antennas
embedded in the interior plasma facing wall of the con-
finement vessel and a portion of their energy is absorbed
by the plasma. Wave energy is coupled to the plasma par-
ticles primarily through resonant absorption. Resonant
absorption occurs when the wave frequency is the same
as a particle cyclotron frequency (see [1, Figure 8]), so that
the wave’s electric field increases the perpendicular veloc-
ity of the resonant particles. The direction of propagation
of the RF waves determines whether this absorption results
principally in heating the plasma or in a combination of
heating and current drive. Wave propagation with a com-
ponent parallel to the field lines can produce signficant
current drive, while perpendicular acceleration principally
produces heating. Typical ion cyclotron frequencies (ICH,
ICCD) lie between 30 and 120 MHz, lower hybrid reso-
nant frequencies (LHCD, for a plasma mode that is a
hybrid of electron and ion cyclotron motions) lie between

1 and 8 GHz, and electron cyclotron resonant frequencies
(ECH, ECCD) lie between 70 and 200 GHz. Current can
also be driven by coupling to fast magnetosonic waves
[fast wave current drive (FWCD)] or ion Bernstein waves
(IBW) in the plasma [36]. 

NBI is the process by which neutral hydrogen or deu-
terium atoms are injected into the plasma at high speed
and then become ionized through collisions with plasma
particles. The resulting ions and electrons then become
part of the plasma. The kinetic energy carried by the origi-
nally neutral atoms is transferred to the plasma by both the
initial and subsequent collisions, resulting in an increase in
thermal energy (temperature) of the plasma. Because the
high-energy beam ions collide primarily with the plasma
thermal electrons, NBI can produce significant current
drive when the beam is injected tangentially (that is, in the
toroidal direction). Tangentially injected neutrals also trans-
fer their momentum to the plasma, thereby increasing the
speed of rotation of the plasma fluid. Perpendicular injec-
tion of neutral beams produces only heating. 

Another interaction between heating and current drive is
produced by the resistivity of the plasma. In the same way
that resistance relates current and voltage in a resistor, resis-
tivity relates local current density (electrical current flow per
square meter of plasma cross section) to local electric field
in the plasma. The resistivity varies in both spatial distribu-
tion and in time (at a given location). The change in resistiv-
ity is primarily determined by the local temperature, with
increasing temperatures responsible for decreasing resistivi-
ty. Thus, (local) heating of the plasma decreases the (local)
resistivity, which in turn tends to increase the (local) current
flow. Thus, while NBI drives significant noninductive current
when injected tangentially, its primary effect is as a method
of plasma heating, which has the collateral effect of broad-
ening the current distribution and increasing the plasma
current for the same loop voltage. In a similar manner, elec-
tron cyclotron heating (ECH), when used for heating the
plasma, can also have the effect of increasing the local cur-
rent in the (highly localized) deposition region.

Tutorial 9: Plasma Heating and Current Drive



model theory. In the classic formulation, the snake curve C is
characterized by a function E(C ), whose minimum value Ẽ is
given by the target contour shape ̃C, that is,

min
C

E(C ) = E
(
C̃

)
≡ Ẽ .

The function E , which is the energy of the contour C
subject to the image, is constructed as the weighted sum
of two contributions

E(C) =
∫ 1

0
α(s)

∣
∣
∣
∣
∂C
∂s

∣
∣
∣
∣

2
+ β(s)

∣
∣
∣
∣
∣
∂2C
∂s2

∣
∣
∣
∣
∣

2

ds

︸ ︷︷ ︸
S(C)

+
∫ 1

0
P(C(s)) ds

︸ ︷︷ ︸
P(C)

,

(11)

where s is the curve parameter. The term S(C), which is
the internal energy of the contour, measures the curve
deformation, presenting a first-order derivative that char-
acterizes the contour with tension and discourages
stretching, and a second-order derivative that regulates
the rigidity and counteracts the bending of the curve. Fur-
thermore, these two contributions to S(C) are allowed to
vary along the curve through the parameters α and β ,
which accounts for localized variations of the shape prop-
erties. In contrast, the energy term P(C), which couples
the snake to the image, is computed by integrating a func-
tion P along the contour.
The choice of P , which
depends on the type of
feature detection required
in the specific application,
is derived from the image
intensity function directly
or through the gradient.
For example, if the user
wants to determine the
presence of light lines on
a darker background, the
appropriate intensity
function is P ; in a 256-
gray-level representation,
black lines and white lines
correspond, respectively,
to the largest and smallest
values of P (255 and 0). If
edges are the salient fea-
tures, a more appropriate
integrand function is the
gradient of the image
intensity, and the transi-

tion between different shades corresponds to peaks in the
P function. Using the complete expression (11), the energy
formulation accounts for the physics of the problem to be
solved, through P(C ), and the mathematics of the solu-
tion, through S(C ).

Having defined the energy function, the solution proce-
dure develops iteratively. After a contour is initialized and
the energy value is computed, the curve is automatically
deformed by minimizing E(C ), guiding the location of the
solution contour. After finding a satisfactory minimum Ẽ ,
the correspondent contour C̃ lies at the bottom of an
energetic well, and the model tracks the motion of C̃ as the
energy function evolves in time. Furthermore, a character-
istic feature of the snake is that the model remains man-
ageable because the degrees of freedom of the curve are
not allowed to evolve independently, due to the geometri-
cal constraints imposed through the internal energy term
S(C). By exhibiting dynamic behavior, these deformable
models are active contours [27].

The Plasma Picture and the
Boundary Detection Problem
Beginning with the assertion that the information on the
plasma boundary is embedded in the magnetic descrip-
tion of the configuration, it can be inferred that the flux
map represents the object plasma. The 3-D map of the
magnetic flux ψ in Figure 8(a) is based on information
given by a magnetic reconstruction code such as XLOC.
The processed output of the magnetic reconstruction (the
flux map) defines the input for the generic boundary
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Figure 8. The plasma image whose edge is to be detected. (a) The intensity of the flux map
as defined by the XLOC algorithm is shown as a 3-D function to better appreciate the energy
landscaping idea and the curve-sliding procedure. The first-wall and plasma boundary are
superimposed to elucidate the meaning of the flux map. (b) The 2-D initial flux map is modi-
fied by subtracting the flux at (c) the boundary, defined as the maximum of the flux at the X
point and over the plasma-facing surfaces. The resulting boundary image suggests the use of
active vision techniques for edge detection.
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reconstruction tool. However, the intensity function is not
yet suitable for automatic boundary detection and thus
needs to be modified by using knowledge of the boundary
flux value ψB to emphasize that the boundary is the edge
of the object plasma and to enhance the detection capa-
bility [Figure 8(b)–(c)]. By exploiting the function 

ψ̃ (r, z) = |ψ (r, z) − ψB| ,

the boundary locus corresponds to the bottom of a
potential well.

Active vision techniques for feature detection (that is,
discerning parts or patterns in an image) are suitable for
boundary reconstruction. The boundary is reduced to a 2-
D dynamic contour that corresponds to the physical shape
of the plasma in evolution, and the reconstruction problem
can be reformulated as follows: Within the plasma region,
find a regular curve that satisfies a specified constraint
involving the flux map of the plasma cross section, and

that depends on the flux value at the boundary. We empha-
size that the shape of the boundary stems from the bal-
ance between the geometric elastic tension and the
image-driven forces. With reference to the notation of the
energy function in (11), the modified flux ψ̃ plays the role
of the image term P, while all nonmagnetic and often less-
measurable effects are merged into geometric constraints
and taken into account by an internal energy contribution.

Mimicking computer vision applications, boundary
reconstruction can be achieved by allowing a snake curve
χ to slide on a flux-based potential field so as to lock onto a
local minimum. The contour χ corresponds to the curve C

in the model (11) and to the plasma
boundary location in physical terms.
The initialization of the contour uses a
curve corresponding to the border of
the first wall (the boundary of the
plasma region �P in Figure 2). This
position has a physical justification, in
the sense that the first guess of the
plasma location comprises the entire
plasma region. The deformation of the
curve, which is governed by a general
shrinking movement implicit in the
minimization of the integral function

(11) proceeds with iterations based on a local algorithm
that searches the neighborhood of the present contour
solution for the curve with the minimum energy value. The
size of the explored neighborhood, which defines the cap-
ture range of the snake, is predefined by the user, accord-
ing to the coarseness of the flux map. Although there is no
guarantee that this approach yields the optimal solution,
experimental results have demonstrated stability, adequate
speed of convergence, and accuracy in estimating the con-
tour details. Thus, the algorithm reconstructs the location
of the plasma boundary on the poloidal plane.

The snake model provides a simple plasma shape
model, which requires limited preprocessing of the input
flux map, due to the constraints imposed by the implemen-
tation of the algorithm for an eventual real-time use, with
characteristic times of a few milliseconds.

New Formulation of the Boundary
Several different candidate models for the plasma bound-
ary are explored in [28]. A first deformable model, which
evolves in the form of a closed curve [see Figure 7(b)],
leads to the definition of an area metric (a metric based on
area measurements) [29], [30]. Also, the built-in compact-
ness of the representation guarantees limited deviation of
the reconstructed contour from the actual boundary when
moving into regions, such as in the X-point area, where the
flux function is nearly flat. In this case, the local extrusion
and deformation of part of the contour are limited by the
energy minimization procedure, which tends to minimize
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Figure 9. The subcontours forming the B-spline. Individual
subcontours of the spline, indicated using different colors, are
each supervised by a different but overlapping subset of the full
set of control points [q1,q2, . . . ,q6]. Although the movement of
one control point locally affects the shape of the curve, the
deformation of the entire contour is fully described by the trans-
formation from the full set of control points to the spline. As an
illustration, the drawing shows the deformation of the shape
due to the movement of the single control point q5, affecting the
location of the curve segments that list q5 as one of the control
points (segments in red, cyan, purple, and yellow).

The tokamak, which is the most common
machine for fusion research, is used to
magnetically confine a gas in the
plasma state inside a doughnut-shaped
metallic chamber.



the curve length as well. Problems may arise when the
plasma undergoes topological changes, for example, dur-
ing the limited-to-diverted plasma transition. In this case,
parameter tuning along with an auto-
matic procedure for relaxing the
smoothness constraints on the curve
are needed to correct deformation of
the boundary and create an X point.
Since this deformation is regulated
by the second-order derivative term in
S , it is reasonable to modify the β
parameter. The desired behavior can be accomplished by
means of either a global procedure, including a constant
weight β̄ in the flux difference 

β(s) = |ψ(χ(s)) − ψB| β̄, (12)

or by resorting to the function d measuring the Euclidean
distance between the curve point χ(s) and the X-point
location X

β(s) = d(χ(s), X (r, z))β̄, (13)

if the coordinates of the X point are computed during the
initial elaboration of the flux map and are provided to the
reconstruction algorithm.

By adopting (12), the smoothness constraint is relaxed
while the model curve χ that undergoes the deformation
approaches the boundary curve since β(s) tends to zero

when the flux value computed on the curve points ψ(χ(s))
tends to the boundary flux value ψB. A similar result can
be obtained in the X-point area with (13). In this case,

though, the effect is local since the parameter β goes to
zero only at the X-point location, where the distance
between χ(s) and X is zero.

An alternative formulation of the energy-minimizing tem-
plate based on a parametric B-spline representation of the
contour [31] implicitly forces the smoothness of the curve,
so that, to compute the deformation, calculation of only the
image term P is required when updating the energy func-
tion [E(C ) = S(C ) + P(C ) reduces to E(C ) = P(C )].

The B-spline is a piecewise polynomial curve, locally
defined in simple form with low-order polynomial func-
tions, yet at the same time globally smooth and flexible
[32]. The global smoothness is enforced by requirements
on matching derivatives at the points where the subcon-
tours are connected. The interesting feature of the B-
spline curve is that the shape of the contour can be
modified by acting on a finite number of control points
(Figure 9) that are related to points of the curve through a
matrix transformation.
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Figure 10. Boundary reconstruction results at JET. These statistical plots show the difference between the boundary determined
by the active contour reconstruction and the boundary defined by the gap values. Using equilibrium reconstruction codes, the
magnitude error in using gaps to determine the boundary location has been estimated to be 2 and 4 cm, depending on the gap
being measured [Figure 6(a)]. The difference between the active contour estimates and the gap-based estimates are approxi-
mately within this estimated error. (a) The mean values and (b) the root mean square (RMS) values, averaged along the con-
tour, represent a displacement of the entire boundary, while (c) the maximum value indicates a local difference in the
reconstructed shape, which typically occurs at the top part of the plasma. In this region the reconstruction of the boundary is
less accurate because the plasma is more distant from the magnetic sensors and the flux function tends to flatten due to the
presence of a top X point.
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While the plasma is evolving and the contour represent-
ing the boundary is deforming, the positions of the control
points change due to the fact that the movement of the

entire curve relies on the movement of the control points.
In contrast, the matrices mapping the control points to the
spline curve are time invariant since they are derived from
the polynomial mathematical structure. Also, if the X-point
position is available, placing a multiple control point at
this location creates an angle along the contour. In doing
so, the B-spline snake simulates the boundary behavior in
proximity to the magnetic null, as obtained from the clas-
sic snake formulation by weighting the β parameter [as in
(12) or (13)]. Thus, the spline approximation provides a
linear mapping between the infinitely many points of the
deformable contour and a limited set of control points in
the (x, y)-plane.

In the B-spline formulation of the snake, the plasma
boundary curve χ is represented by the spline curve h, so
that (11) reduces to

E(χ) =
∫ 1

0
P(h(s)) ds.

With this technique, energy minimiza-
tion of the snake model is carried out
over the points of the contour, which
slides over the image surface. If the

model is well behaved, the properties of the contour are
captured by a limited set of control points, which provide
compact representation and local control of the curve with-
out diminishing the physical consistency of the solution.

Experience has shown that the snake model can
locate the boundary and converge to a solution, while
remaining sensitive to the tuning of the parameters in
the energy expression. After verifying the correctness of
the methodology, quantitative evaluations of the recon-
struction accuracy are carried out using the JET data-
base as a testbed. The values of the gap signals judging
the correctness of the reconstruction, that is, the dis-
tances between the boundary defined by the set of gap
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Figure 11. Tracking a plasma shape with the active contour technique for JET pulse #57989. (a) Convergence to the initial
shape. The dashed red line is the initial contour, the dotted curves are the iterations, and the blue solid line is the detected
boundary. The curves shown for successive iterations follow the flux map grid points, and thus appear to be less smooth than
the final contour. (b) The evolution during the discharge. The deformation of the plasma shape is evident. The configuration
changes from a standard shape to a highly triangular one, with deformations mainly in the inner part of the boundary and the
position of the X point. (c) The gap behavior is plotted as a function of time. The gaps, which are located as shown in Figure
6, are grouped according to the position on the poloidal cross section. From these waveforms the actual deformation of the
shape is scarcely perceivable.
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values and the continuous curve, are evaluated. As can
be seen in Figure 10, the accuracy required for the effec-
tive and safe execution of the experiment is achieved
using the snake model, since the error is within the esti-
mated error bar of the gap recon-
struction. Moreover, although the
accuracy of the reconstruction relies
on the quality of the flux map, the
snake model approach has an inher-
ent robustness due to the geometric
regularization, and thus artifacts due
to errors in the magnetic informa-
tion can be corrected.

The plasma boundary is determined by the magnetic
field configuration. Thus, when the flux distribution
changes in time, the plasma boundary changes shape.
Since the plasma is assumed to evolve through equilib-
rium states,  reconstruction of  the movement is
obtained frame by frame from single snapshots, namely,
from flux maps produced at discrete time steps. Once
the first boundary is detected, the shape can be tracked
by using the previously computed contour. The capture
range and number of iterations for convergence are sig-
nificantly reduced after the first boundary reconstruc-
tion, improving the overall execution time of the
algorithm. Since there is no time evolution model used
in the active contour (as implemented thus far), recon-
structing the plasma shape is a problem of segmentation
(distinguishing a figure from the image background),
more than tracking. The advantages are impressive
when analyzing the evolution of the plasma shape dur-
ing a pulse. As shown in Figure 11, the deformation is
perceived more clearly than through examination of the
evolution of gap signals.

New Formulation
of the Plasma Parameters
Describing the boundary as a curve on the poloidal plane
introduces a new calculation, if not a new definition, of the

global plasma quantities κ and δ. Elongation and triangular-
ity can now be computed using the continuous boundary
locus instead of resorting to point-based local information
as in (8)–(10).

The definition (7) of the elongation κ based on the area
of the cross section serves as an illustrative example,
where A and a can now be directly and accurately com-
puted. Similarly, upper and lower triangularity can be
given as the area ratios

δUP = AUPout − AUPin

AUPout + AUPin
,

δLOW = ALOWout − ALOWin

ALOWout + ALOWin
,

where the area sector definitions are deduced from Figure 4.
With this approach, the triangularity parameters account
for the effective curvature of the plasma boundary and
represent a more refined description of the plasma bound-
ary shape than the analogous quantities obtained from
point information.
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Figure 12. Tracking the global parameters for JET pulse #57989, where subscripts I, P, and GAP indicate that the parameter
is calculated using the integral snake representation, the pointwise information, and the gap values, respectively. (a) The
elongation κ . The (b) upper and (c) lower triangularity δUP and δLOW. Although all of the quantities exhibit similar behavior
during the discharge, the parameters obtained from the snake representation provide a more detailed description of the
shape deformations than those computed based on gap distances.

The plasma boundary reconstruction
can be viewed as a feature

detection problem.



This boundary description is applied to JET plasmas,
using the active contour reconstruction to provide the
boundary curve for the area calculations, while the com-
puted parameters are compared with the corresponding
quantities obtained from point information. For the plasma
evolution of a highly shaped pulse, the shape deformation
shown in Figure 11 is reflected in the parameter behaviors
of Figure 12. Elongation and triangularity measurements
yield interesting considerations. For example, the different
definitions for elongation κ—one computed from gap val-
ues, the other from area quantities—cause the computed
results to take on different ranges of values. Moreover,
elongation and triangularity computed according to the
contour boundary description exhibit dynamic behavior
that is more nervous than the respective gap-based values
(8)–(10), since these parameters are not explicitly regulat-
ed by gap control. Although all of the parameter represen-
tations show similar behavior, the form derived from the

continuous description is more realistic since the calcula-
tion accounts for the curvature of the contour.

Application to Shape Control
Reconstruction using splines facilitates control action
based on the set of control points over a 2-D space but
facilitates control of the entire contour on the poloidal sec-
tion. To produce a useful description of the contour, the
number of control points is kept constant and close to the
number of independent actuators. The structure of the
spline curve is chosen such that the location of each con-
trol point is correlated with active circuit effectiveness to
deform or regulate the plasma shape as well as with the
position of the coils on the tokamak cross section. We can
postulate that a transformation exists from the space of
actuator currents to the space of control points, which
corresponds to the transformation between the magnetic
configurations attainable in a specific tokamak and the
resulting plasma shapes. In producing a mapping between
actuator currents and spline control points, a controller
can be designed that acts on the external active circuits to
achieve the desired plasma shape.

As an illustration, Figure 13 shows the movements of
the control points during the convergence of the boundary
detection algorithm. Ambiguous cases may arise, however,
particularly in devices like JET, where the shaping circuits
are comprised of series-connected multiple toroidal wind-
ings of copper conductor whose coordinates in the (r, z)-
plane are distributed spatially [1, Figure 5]. Therefore,
because of the different positions in the poloidal plane, the
control actions cannot be assigned with confidence to one
coil instead of another. Nevertheless, it is possible to dis-
tinguish some influence in the divertor region where the
coils are controlled separately and on the midplane due to
the action of the radial field.

For this reason, further studies were conducted on the
ITER-FEAT machine design, where the action of each shap-
ing coil is commanded separately, enabling better assess-
ment and understanding of the relationships among curve
shape, control points, and the action of actuators. These
analyses required extensive use of the MAXFEA equilibri-
um evolution code. It appears clear that the number of
spline control points dictated by control requirements
(number of control points equal to number of available
independent actuators) yields only a rough approximation
of the boundary shape. We have thus implemented a more
precise definition of the boundary spline curve using a
larger number of control points to measure the distance
of the boundary from a shape target model. The initial 2-D
spline curve representing the boundary is thus reduced to
a one-dimensional spline representing the distance func-
tion, providing a smaller set of control point parameters
that summarize the geometric configuration of the plasma
cross section. It is thus possible to design a spline control

October 200562 IEEE Control Systems Magazine

Figure 13. B-spline control point movements during conver-
gence of the boundary detection algorithm. This figure sug-
gests a correlation between the location of the control points
that parameterize the spline model of the boundary and the
position of the shaping coils, since some of the control points
are moving along a line connecting the active coil to the
plasma centroid (black dotted lines). By producing a map
between the external actuators and the spline control points,
it is possible to control the plasma boundary by taking into
account the entire curve. The control points are indicated
with red crosses during the iteration (corresponding to the
blue dotted curves) and with square dots when the boundary
is detected (blue solid contour). The coil sections are visible
in gray blocks.
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scheme whose performance is comparable to that of a
classic gap controller. The results of control simulation
are encouraging, showing that convergence to zero of the
control point position error, obtained by using the spline
controller, implies the regulation of the gap values as well.
A complementary behavior is not ensured by the gap con-
trol technique, which is not similarly efficient at control-
ling the spline curve [33].

Furthermore, preliminary work using the spline con-
troller, and based on the area definition of both triangular-
ity and elongation, confirms that global properties can be
better recovered from a shape disturbance using the con-
tour approach than by the gap controller, although some
effort is still necessary to provide reliable measurements
of the controlled variables. Nevertheless, the idea is
appealing since many high-performance scenarios require
control of global parameters.

An interesting application is the problem of optimal
coupling of the heating antennas with the plasma 
(see “Tutorial 9”). In this case, the plasma boundary must
be maintained at a fixed distance from the wall over the
entire spatial extent of the antennas, a requirement that is
more easily posed using the contour approach than when
controlling a discrete number of boundary points. The reg-
ularity of the boundary curvature of specific sections of
the plasma surface simplifies the description of the defor-
mation in front of the devices into principal movements
(tilting and displacement orthogonal to the antenna).

Discussion and Conclusions
In this article, we presented the problem of plasma bound-
ary reconstruction in relation to shape control and dis-
cussed different approaches sharing the same objective of
guaranteeing accuracy and robustness of plasma bound-
ary control. We stressed that shape measurement is a deli-
cate operation because it is based on calculations. 

Deformable models provide a new formulation of the
plasma boundary as a continuous contour, which facili-
tates more accurate estimation of global shape parame-
ters, able to describe the plasma evolution in a realistic
way. Moreover, the representation of the plasma bound-
ary as a curve is immune from the problematic issues
due to the use of local information and results in less
sensitivity to noise. The methodology provides an intu-
itive and elegant tool for plasma boundary representa-
tion and dynamic reconstruction, appealing for plasma
shape diagnostics and control, since the technique
enhances the control accuracy of both the shape global
parameters and the boundary itself. At the same time,
this description shows new control variables with
respect to gaps or flux errors, when we consider the
spline control points, or different value ranges, when the
global quantities are defined according to area ratios.
The active contour representation can be used either in

the gap control methodology or to control global quanti-
ties. For example, the definition of gap clearance can be
modified by computing the minimum distance from the
boundary to the first wall. Still, it is more difficult to con-
trol the minimum distance along a contour than the mini-
mum distance over a set of gaps.

The results of the analyses performed on JET and on
ITER support the validity of the snake reconstruction
methodology, consistent with the gap controller boundary
information, since the response of the active contour
approach is tested against the information available in real
time to the system (employed in the case of JET, designed
in the case of ITER). The flux maps used for reconstruction
are obtained either from a reconstruction code operating
on real experimental data or from an MHD equilibrium
code. The next step in evaluating the new approach con-
sists of more exhaustive and fully real-time tests on existing
machines. At the same time, work is in progress on magnet-
ic diagnostics [34] and flux reconstruction modeling [35] to
further develop capabilities for shape reconstruction.
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